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ABSTRACT

PCA algorithm is used to recover low rank from the data
matrix. Robust PCA is PCA with slight modifications which
works well even when the data entries are very corrupted. In
this paper, we wish to analyze the performance of these algo-
rithms on two applications.First we will look at the problem
of foreground background separation and then we will look
into the problem of image inpainting. We have implemented
different algorithms and analyzed their runtime and other
parameters.

Index Terms— PCA, Gradient Descent, Impainting

1. INTRODUCTION

A lot of applications in the field of machine learning, data
mining, computer vision require us to reduce the dimensional-
ity of the given data. It is necessary as it is very challenging to
work on high dimensional data. Principle Component Analy-
sis is a standard procedure to undertake this task via eigen de-
composition of the given data matrix. It successively finds the
orthogonal principal components to capture maximum vari-
ance in the dataset. But, it has its fair share of limitations.
This process is sensitive to presence of outliers and performs
poorly when the data is noisy and corrupted. This calls for
the need of a more robust method of undertaking these tasks
which is known as Robust Principle Component Analysis(
RPCA). Given a matrix with highly corrupted data, RPCA can
recover the low rank component from the data. A solution to
the above problem which would be provably correct and scal-
able could have an impact on todays data-intensive scientific
discovery. Given a data matrix M ∈ Rm×n. RPCA aims to
decompose this into two matrices L and S whereM = L+S.
Matrix L is the low rank part of the matrix and S is the sparse
component. The sparse component can have sufficiently high
and arbitrary values.

The generic problem of RPCA can be formulated in the
following manner:

min
L,S

rank(L) + λ||S||0 (1)

where λ is a weight parameter It has a varied number of appli-
cation in a number of domains. It can be used for foreground-

background videos. For this problem, the background is con-
sidered to be the low rank component assuming that it remains
similar for a small video and the foreground is considered as
the sparse corruption. Performing RPCA will lead us to ex-
tract these two components from the original matrix. It can
also be used for Image Inpainting. The original underlying
image can be reconstructed back from the corrupted image
using RPCA. Here, the corrupting noise is considered as the
sparse part and the underlying clean image as the low rank
component. It has been used in certain Natural Language
Processing Tasks for characterization of documents. Com-
mon words in the document can be formulated as being the
low rank component and few uncommon words as the sparse
part.

2. RELATED WORKS

Several convex as well as non-convex algorithms have been
proposed to solve this problem of RPCA. Especially the con-
vex approach of RPCA has been thoroughly studied [3]. If the
location of sparse entries of matrix S is uniformly distributed
and certain conditions are satisfied on the rank of low rank
matrix L, L and S can be recovered with very high probabil-
ity. Convex approaches usually have relatively high complex-
ity due to the need of solving (partial) SVD of large matrices.

Cai et. al.[6] solves a relaxed version of the original
RPCA problem. This method consists of relaxing the rank
constraint rank(L) in the optimization problem to the nuclear
norm L∗.

Koh et al. [7] solves a nuclear norm regularized linear
least squares problem. This regularized problem is a spe-
cial case of an unconstrained non-smooth convex optimiza-
tion problem, in which the objective function is the sum of
a convex smooth function with Lipschitz continuous gradient
and a convex function on a set of matrices. They propose
an accelerated proximal gradient algorithm that terminates in
O(1/

√
ε) iterations with an ε -optimal solution.

A fast iterative shrinkage-thresholding algorithm (FISTA)
proposed by Beck et al.[8] have significantly better global
convergence rate.

It is noteworthy that the convex relaxation may not be a
good approximation for this problem in real-world applica-
tions. Sun et al.[9] present a novel non- convex formulation
for the RPCA problem using the capped trace norm and the



capped l1-norm. For solving the non-convex problem, they
propose a greedy based approach and a difference of convex
functions based framework to solve the problem.

A number of other non convex approaches ranging from
Alternating Projections(AltProj) to Fast factorization based
approaches have been proposed with better complexity. This
problem is still being studied and efforts are being made for
better recovery and improving complexity.

3. IMPLEMENTED ALGORITHMS

3.1. Robust PCA using alternating projections

Netrapalli et al. [1] proposed an alternating update technique
for obtaining the low-rank and the sparse component respec-
tively.We have,

M = L+ S,M ∈ Rm×n (2)

The algorithm formulates the PCA problem as that of find-
ing a matrix L of desired rank r such that it belongs to the
intersection of the following two sets:

L = { set of all r rank matrices}
SM = {M − S,where S is a sparse matrix }

The algorithm runs for r stages,where r is the desired rank
and each stage consists of certain number of iterations.In each
iteration, it obtains L by projectingM−S onto the set of low-
rank matrices and then it updates S by projectingM −L onto
the set of sparse matrices.It can be observed that these sets are
non-convex,but projections onto them can be done efficiently.
To obtain projection onto the set of k rank matrices,singular
value decomposition(SVD) is used.Let,

A = UΣV T (3)

then,

Pk(A) = [u1u2...uk]diag(σ1, σ2, ..., σk)[v1v2...vk]T (4)

is the best k rank approximation for matrix A where 1 ≤ k ≤
rank(A).
The projection onto the set of sparse matrices is done by
Hard-thresholding on M − L which is described as follows:

(HTτ (M − L))ij =

{
0 |(M − L)ij | < τ

(M − L)ij otherwise

(5)

Initialization: The low-rank component is initialized as
L=0.S is initialized via hard-thresholding on M to remove
very large entries from it.This threshold is τ = βσ1(M).
β is the only significant parameter of this algorithm and it
represents the ”spikiness” of the low-rank component.If L is
expected to have ”spiky” elements,then higher values of β
should be used.β = 1/

√
n has been used in [1].

Main Loop: In the kth stage where 1 ≤ k ≤ r and r is
the desired rank,the algorithm runs for a fixed number of
iterations T , where

T = 10log(nβlog(||M − S(0)||2)/ε) (6)

where ε is the reconstruction error bound,

||M − S − L||F ≤ ε2 (7)

.In each iteration t,the algorithm alternates between rank-k
projection and hard thresholding.The threshold is updated in
each iteration as

τt = β(σk+1(M − S(t)) +
1

2t
σk(M − S(t))) (8)

After T iteration,in the kth stage we check whether the re-
maining part has significant norm or not by the following con-
dition

βσk+1(L(T )) <
ε

2n
(9)

If this condition is satisfied,L(T ), S(T ) are returned otherwise
the process is continued with

S(0) = S(T ) (10)

The overall time-complexity of the algorithm is O(r2mn).
The pseudo-code and rest of the details can be found in [1].

3.2. Robust PCA using IALM method

Given a matrix M such that

M = L+ S (11)

[5] formulates the RPCA problem as follows:

{L̂, Ŝ} = argmin||L||∗ + λ||S||1,M = L+ S (12)

Hence,the lagrangian after including the quadratic penalty
term is:

L(L, S, Y, µ) = ||L||∗+λ||S||1+〈Y,M−L−S〉+µ

2
||M−L−S||2F

(13)
The IALM approach solves this convex program by utilising
an alternating optimization technique to update L and S.
Initialization:Y is initialized as follows:

Y 0 =
sgn(M)

J(sgn(M))
, J(Y ) = max(||Y ||2, λ−1||Y ||∞) (14)

µ0,S and ρ,which is used to update µ are set as:

µ0 =
1.25

||M ||2
, S = 0, ρ = 1.6 (15)



Main loop:In each iteration,L is updated as follows:

Lk+1 = arg max
L
L(L, Sk, Yk, µ) (16)

This is done as follows:

(U,Σ, V ) = SVD(M − Sk +
Yk
µk

) (17)

Ak+1 = USµ−1
k

[Σ]V T (18)

Here,Sε[x] is the soft-thresholding(shrinkage) operator:

Sε[x] =

 x− ε x > ε
x+ ε x < −ε

0 otherwise
(19)

S is updated as follows:

Sk+1 = arg max
S
L(Lk+1, S, Yk, µk) (20)

Which is done as follows:

Sk+1 = Sλµ−1
k

[M − Lk+1 +
Yk
µk

] (21)

Y and µ are updated as follows:

YK+1 = Yk + µk(M − Lk+1 − Sk+1), µk+1 = ρµk (22)

The main loop is terminated and Lk+1,Sk+1 are returned if
the following convergence criterion is met:

||M − Lk+1 − Sk+1||F < 10−7||M ||F (23)

The pseudo-code and rest of the details of the algorithm can
be found at [5]

3.3. Robust PCA via Gradient Descent

This approach is an non-convex method based on the pro-
jected gradient descent on factorized space. It is assumed that
deterministic corruptions are spread out and there is an upper
limit on their number in each row and column.

We consider the problem of observing the matrix Y ∈
Rd1×d2 such that Y ∗ = M∗ + S∗ where M∗ is the low rank
part and S∗ has sparse support with corrupted entries[2].

Yi,j =

{
(M ∗+S∗)i,j with probability p

∗ otherwise (24)

It is assumed that entries of Yi,j are revealed independently
with probability p. M* cannot be low rank and sparse at the
same time.

An iterative gradient based method is used to solve this
problem. Input is an observed matrix Y with desired rank r,
corruption factor α.[2]

Initialize Sinit with a sparse estimation of matrix Y de-
fined as Tα[Y ]. Top α-fraction entries in Y corresponding to
each row and column are kept intact and rest other entries are
made to 0 to get the sparse estimator and matrix Sinit. Per-
form SVD operation on Y − Sinit to get a rough estimate of
the low rank part through its decomposition U0 and V0.

Once we have U0 and V0 for iteration t = 0 we apply
gradient based iteration to get the final output. For iteration t,
update S as

St ← Tα[Y − UtV Tt ] (25)

To get Ut+1 and Vt+1, perform a projected gradient descent
on low rank factorized space.

Ut+1 ← ΠU (Ut−η∆UL(Ut, Vt;St)−
1

2
ηUt(U

T
t Ut−V Tt Vt))

(26)

Vt+1 ← ΠV(Vt−η∆V L(Ut, Vt;St)−
1

2
ηVt(V

T
t Vt−UTt Ut))

(27)
where L(Ut, Vt;St) is the loss function defined as the frobe-
nius norm of a matrix.

L(U, V ;S) =
1

2
||UVT + SY ||2F , (28)

We iterate through the loop until and unless we don’t con-
verge. At the end of this algorithm we have UT and VT which
are the final values for these matrices. Obtain the low rank
part M by setting it equal to UTV TT

Projection on set U is done so as to preserve µ coherent
structure of matrix M . It ensures that M is not too sparse.
Hence, a constraint is put on the row norms of U and V pro-
duced during the iterations.

Even though the algorithm is convex, it seems to have lin-
ear convergence guarantees. If all the initialization are per-
formed properly, the algorithm can be solved with the com-
plexity O(rd2 log(1/ε)) with the robustness value α of the
order ofO(1/(µr1.5)) [2]. This algorithms outperforms other
best know algorithms by a factor of r.

3.4. Non-convex rank approximation based Robust PCA

[3] formulates the problem of RPCA as follows:

min
L,S
||L||γ + λ||S||l s.t M = L+ S (29)

where rank(L) is approximated as the ||.||γ and termed as
γ-norm,and ||.||l is a proper l-norm.The γ-norm is defined as
follows:

||L||γ =
∑
i

(1 + γ)σi(L)

γ + σi(L)
, γ > 0 (30)

Further,it can be easily observed that,

lim
γ→0

||L||γ = rank(L) (31)



lim
γ→∞

||L||γ = ||L||∗ (32)

Further,[3] suggests that γ = 0.01 closely approximates the
true rank. The optimization problem after obtaining the la-
grangian with Y being the lagrange multiplier and adding
quadratic penalty term becomes:

L = ||L||γ+λ||S||l+〈Y,L+S−M〉+µ

2
||M−L−S||F (33)

Where the inner product of two matrices is 〈A,B〉 = tr(ATB)
and µ is the regularization parameter. Now,an alternating op-
timization technique is used to update L,S.
Initialization: L← 0,S ← 0
Main Loop: In tth iteration of the main loop Lt is updated as
follows:

Lt = argmin
L

L(L, St−1, Y t−1, µt−1) (34)

follwed by upadating St as follows:

St = argmin
S

L(Lt, S, Y t−1, µt−1) (35)

Y t and µt are updated as follows:

Y t = Y t−1 + µt−1(Lt + St −M) (36)

µt = ρµt−1 (37)

And the convergence criterion used is as follows:

||M − Lt − St||F
||M ||F

≤ ε (38)

4. DATASET

For the foreground-background separation task, we will use
the readily available Escalator video which is widely used for
for comparing RPCA algorithms.We take 196 frames of this
video each of size 160× 130 for our experiments.

Fig. 1: Corrupting Image for Image Impainting Task

For the task of image impainting, we need to corrupt the
images with noise. We use the already available image of
moon from matlab for this task. We corrupt this image with a
text image masked over it.

5. APPLICATIONS

5.1. Video Foreground-Background Separation

In motion videos where foreground objects are moving with
respect to a constant background, this method can be very
helpful. Robust PCA models background as the low rank
component and the foreground as the sparse corruptions. We
have implemented on videos whose frames are converted to
grayscale. It can similarly be extended to colored videos as
well.

We apply all the four algorithms for performing this task.

5.1.1. RPCA using Alternating Projections

For this approach, we have obtained the best rank-1 approx-
imation of the low rank component. And,we have set β =
1/
√
n,ε = 10−3,where n is the number of columns of the ob-

served matrix.

Fig. 2: Screenshot: Left frame is of original video; right
frame is the background after applying Alternate Projection
algorithm

5.1.2. RPCA using IALM

In algorithm,we use the parameters with the same values as
mentioned in section 3.2 and λ = 1√

m
,where m is the number

of rows of the observed matrix.

Fig. 3: Screenshot: Left frame is from original video; right
frame is the background after applying IALM algorithm

5.1.3. Fast RPCA via gradient descent

In this algorithm,we find a rank-1 approximation of the ob-
servation matrix using α = 0.15,tolerance = 2× 10−4,η =
0.5,γ = 1.5



Fig. 4: Screenshot: Left frame is of original video; right
frame is the background after applying Fast gradient based
method

5.1.4. Non-convex rank approximation based RPCA

The following parameter values are used µ0 = 0.005,ρ = 1.1,
λ = 1√

maxm,n .

Fig. 5: Screenshot: Left frame is of original video; right
frame is the background after applying Fast gradient based
method

5.2. Image Inpainting

Image Inpainting is a task where a corrupted part of an image
has to be recovered. It is a heavily researched task. Various
methods ranging from Orthogonal Matching Pursuit to IRLS
are used for solving this problem.

To solve this problem, overlapping image patches of a
fixed window size are created and flattened to generate a ma-
trix. Different Robust PCA algorithms are then used on this
matrix to recover the low rank part from it. Here, the unknown
pixels which have been masked by noise are corruptions and
constitute the sparse component. The underlying clean image
is the low rank part which has to be recovered.
In this application,we have implemented only the first 3 algo-
rithms.

5.2.1. RPCA using Alternating Projections

For this approach,we have obtained the best rank-1 approx-
imation of the low rank component.And,we have set β =
1/
√
n,ε = 10−3,where n is the number of columns of the

observed matrix.

Fig. 6: Inpainting Using Alternating Projection

5.2.2. RPCA using IALM

In algorithm,we use the parameters with the same values as
mentioned in section 3.2 and λ = 1√

m
,where m is the number

of rows of the observed matrix.

Fig. 7: Inpainting Using IALM algorithm

5.2.3. Fast RPCA via gradient descent

In this algorithm,we find a rank-1 approximation of the ob-
servation matrix using α = 0.15, tolerance = 2 × 10−4,
η = 0.5,γ = 1.5

Fig. 8: Inpainting using Fast gradient based method



6. RESULTS

6.1. Background-foreground seperation

Performance comparison
Algorithms Rank ||M−L−S||F

||M ||F run-time
AltProj 1 0 128.6174s
IALM 6 3.0958e-

13
49.5730s

Fast
RPCA

2 0.1232 27.2s

Non-
convex
RPCA

2 3.44e-7 34.2688s

6.2. Image inpainting

Performance comparison
Algorithms Rank ||M−L−S||F

||M ||F run-time
AltProj 1 0 3.9246s
IALM 6 2.497910e-

10
4.8690s

Fast
RPCA

6 0.121 0.98s

6.3. Inferences

In terms of visual quality of the extracted low-rank compo-
nent in the foreground-background task,all algorithms give
similar quality.
However,in the image inpainting task IALM seems to give
better results than the other two algorithms.
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8. FUTURE WORK

In the video background-foreground application,we took only
196 frames for our experiments due to memory and speed
constraints.Also,we were unable to implement [4] due to diffi-
culties in implementing the proximal operator used in it.So,in
future one can extend this work and compare these algorithms
on more number of frames and try to implement 2D-RPCA.
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