
Conversion of Handwritten Mathematical
Expressions to LATEX

Sharad Roy(14628), Gaurav Kumar(14240)

Indian Institute of Technology, Kanpur



Table of contents

1. Introduction

2. Dataset

3. Character Segmentation

4. Tree Generation

5. Classification

6. Results

1



Introduction



Motivation

• Digital documents have increased many fold in recent past.
• Difficult to render mathematical equations using plain text
editor.

• Led to an increase in popularity of typesetting systems like LATEX.
• Typing equation on LaTeX is cumbersome and time consuming.
• Important to perform recognition of mathematical equations.
• Handwritten digit recognition has been widely studied, but work
on mathematical equations is still rare.

2



Existing Work

• Premilinary work done by LeCun et. al for handwritten digit
recognition. Used for Zipcode reading in postal service

• Implemented a 7 layer Convolutional Neural Network for this.
• Awal et. et al tries to look at strokes inside text for
segmentation and performs it simultaneously along with
recognition and interpretation.

• Web app call detextify performs only symbol wise recognition of
expressions and that too with many errors.

• ”Alvaro et. al - Offline Features for Classifying Handwritten Math
Symbols with Recurrent Neural Networks” does this task to
some extent, however fails in nested super/sub-script cases.

3



Dataset



Dataset

• Dataset is taken from kaggle and has 82 different classes. A
snippet of the dataset is as follows

Figure 1: A snippet from Sigma class

4



Dataset Pre-processing

• Dataset is skewed with character ’-’ being the most frequent with
12328 data points and character ’∃’ the least with 11 data points

• Consider top 40 classes for our case to reduce class imbalance

Figure 2: Histogram showing distribution of each character

5



Character Segmentation



Preprocessing

• Denoising: Image is denoised using a median blur filter

• Binarization: Used minimum thresholding to binarize the text.

• Skeletonization: The binary image is skeletonized to 1 pixel
stroke thickness to match the dataset images.

6



Preprocessing

• Denoising: Image is denoised using a median blur filter

• Binarization: Used minimum thresholding to binarize the text.

• Skeletonization: The binary image is skeletonized to 1 pixel
stroke thickness to match the dataset images.

6



Preprocessing

• Denoising: Image is denoised using a median blur filter

• Binarization: Used minimum thresholding to binarize the text.

• Skeletonization: The binary image is skeletonized to 1 pixel
stroke thickness to match the dataset images.

6



Contouring

• Edge Detection: Used Canny Edge Detection to draw the
boundaries of characters.

• Contouring: Found the curve joining all the continuous points

• Segmentation: Found the bounding box enclosing each
individual outer contour.

• Deskewing: Computed the skew of the character by using image
moments and applied affine transformation.

7



Contouring

• Edge Detection: Used Canny Edge Detection to draw the
boundaries of characters.

• Contouring: Found the curve joining all the continuous points

• Segmentation: Found the bounding box enclosing each
individual outer contour.

• Deskewing: Computed the skew of the character by using image
moments and applied affine transformation.

7



Contouring

• Edge Detection: Used Canny Edge Detection to draw the
boundaries of characters.

• Contouring: Found the curve joining all the continuous points

• Segmentation: Found the bounding box enclosing each
individual outer contour.

• Deskewing: Computed the skew of the character by using image
moments and applied affine transformation.

7



Contouring

• Edge Detection: Used Canny Edge Detection to draw the
boundaries of characters.

• Contouring: Found the curve joining all the continuous points

• Segmentation: Found the bounding box enclosing each
individual outer contour.

• Deskewing: Computed the skew of the character by using image
moments and applied affine transformation.

7



Tree Generation



How tough are you?

In general, there are three ways a new character is related to the
previous character:

• Super-script
• Sub-script
• Same level

Developed a recursion based algorithm to generate a spanning tree
using the relative positions of the character boxes.

8



How tough are you?

In general, there are three ways a new character is related to the
previous character:

• Super-script
• Sub-script
• Same level

Developed a recursion based algorithm to generate a spanning tree
using the relative positions of the character boxes.

8



Example tree

(a) Segmented Characters

(b) Spanning Tree

Figure 3: Illustration of Super/Sub-script Tree
9



Classification



Feature Selection

Classification can be done using two approaches:

• Use handcrafted features like HOG, SIFT, SURF
• Use deep neural networks like CNN

After pre processing, image is binary and skeletonized to 1 pixel.

• Evident that SIFT and SURF features should not work very well
for this task.

• Histogram of Oriented Gradient feature is used for each image.
• Stroke patterns of characters are important and hence HOG is a
good descriptor for capturing this.

10



HOG Features

• Resize each image to 45 × 45 dimensions.
• Find hog descriptors for each image.
• Parameters for HOG Descriptors include the following :-

• BlockSize =(10,10)
• BlockStride= (5,5)
• Cell size =(10,10)
• nbins =9

• These parameters have been reached upon by tuning and
careful inspection.

11



Results on different classifiers

• After feature extraction, different classification models are
trained .

• Following results were reached upon:

Model Accuracy on Test Data
SGD Classifier 89.5

Logistic regression 92.5
Naive Bayes Classifier 68.3
Decision Tree Classifier 64.5

So can we do better, yes we can !!!!

12



Time to move to CNN

• Input Layer: Raw pixel values of image normalized between 0
and 1

• Convolutional layer: 30 5× 5 filters are applied followed by
ReLU Activation followed by max pooling operation

• Convolutional layer: 15 3× 3 filters are applied followed by ReLU
Activation followed by max pooling operation

• Apply dropout layer next to it to make the system robust and
reduce complexity.

• Flatten the layer and add two fully connected layer next to it.
• Apply softmax at the last layer to get class probabilities.

13



Hyperparameters Tuning

• Loss function used is categorical cross entropy
• Optimizer: Adam
• Adam optimization algorithm is an extension to stochastic
gradient descent. Adam improves on the benefits of both
AdaGrad and RMSProp.

• A lot of other parameters i.e, Batch Size and Number of Epochs
were tuned to get the best results.

• Batch Size: 128
• Epochs: 20
• Accuracy: 98.59 %

14



Results



Sample Result 1

Figure 4: Sample Input 1

LATEX Output:

a21 + b32 + cx1 = x2

15



Sample Result 2

Figure 5: Sample Input 2

LATEX Output:

Σ5
b9θ + sin x−

√
99

16



Sample Result 3

Figure 6: Sample Input 3

LATEX Output:

(3x3 + 8θ +
∫
sin θ2)

17



Sample Result 4

Figure 7: Sample Input 4

LATEX Output:

(1Σ
5
1x2 + 3x1+

∫
8θdθ +

∫
tan θdθ)

18



Sample Result 5

Figure 8: Sample Input 5

LATEX Output:

(Σ9
kk2 + 22k3 +

∫∞
0 tan−1(πx)dx)

19



Whats New?

• Contour based segmentation is faster than the popular sliding
window segmentation method.

• Recursion based tree algorithm takes care of virtually infinite
nested super/sub-scripts.

• Complete end-to-end conversion web application.

20



Whats New?

• Contour based segmentation is faster than the popular sliding
window segmentation method.

• Recursion based tree algorithm takes care of virtually infinite
nested super/sub-scripts.

• Complete end-to-end conversion web application.

20



Whats New?

• Contour based segmentation is faster than the popular sliding
window segmentation method.

• Recursion based tree algorithm takes care of virtually infinite
nested super/sub-scripts.

• Complete end-to-end conversion web application.

20



Further Work

• Addition of frac function for multi-line fractions.
• We are working on a web based application for this task.
• It takes as input an image and returns the latex code.

Figure 9: Screenshot of Web based application

21



References

• ”Handwritten math symbols dataset” by Xai Nano on kaggle.
• Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner.
”Gradient-based learning applied to document recognition”
Proceedings of the IEEE, Volume 86, Issue 11 (1998).

• Ahmad-Montaser Awal, Harold Mouchere, Christian
Viard-Gaudin. ”Towards handwritten mathematical expression
recognition.” 10th International Conference on Document
Analysis and Recognition(ICDAR), 2009

• ”Detexify” by Kire Labs Link

https://www.kaggle.com/xainano/handwrittenmathsymbols
http://detexify.kirelabs.org/classify.html

	Introduction
	Dataset
	Character Segmentation
	Tree Generation
	Classification
	Results
	Appendix

