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Introduction



Motivation

• Digital documents have increased many fold in recent past.
• Difficult to render mathematical equations using plain text
editor.

• Led to an increase in popularity of typesetting systems like LATEX.
• Typing equation on LaTeX is cumbersome and time consuming.
• Important to perform recognition of mathematical equations.
• Handwritten digit recognition has been widely studied, but work
on mathematical equations is still rare.
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Existing Work

• Premilinary work done by LeCun et. al for handwritten digit
recognition. Used for Zipcode reading in postal service

• Implemented a 7 layer Convolutional Neural Network for this.
• Awal et. et al tries to look at strokes inside text for
segmentation and performs it simultaneously along with
recognition and interpretation.

• Web app call detextify performs only symbol wise recognition of
expressions and that too with many errors.

• ”Alvaro et. al - Offline Features for Classifying Handwritten Math
Symbols with Recurrent Neural Networks” does this task to
some extent, however fails in nested super/sub-script cases.
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Dataset



Dataset

• Dataset is taken from kaggle and has 82 different classes. A
snippet of the dataset is as follows

Figure 1: A snippet from Sigma class
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Dataset Pre-processing

• Dataset is skewed with character ’-’ being the most frequent with
12328 data points and character ’∃’ the least with 11 data points

• Consider top 40 classes for our case to reduce class imbalance

Figure 2: Histogram showing distribution of each character
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Character Segmentation



Preprocessing

• Denoising: Image is denoised using a median blur filter

• Binarization: Used minimum thresholding to binarize the text.

• Skeletonization: The binary image is skeletonized to 1 pixel
stroke thickness to match the dataset images.
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Contouring

• Edge Detection: Used Canny Edge Detection to draw the
boundaries of characters.

• Contouring: Found the curve joining all the continuous points

• Segmentation: Found the bounding box enclosing each
individual outer contour.

• Deskewing: Computed the skew of the character by using image
moments and applied affine transformation.
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Tree Generation



How tough are you?

In general, there are three ways a new character is related to the
previous character:

• Super-script
• Sub-script
• Same level

Developed a recursion based algorithm to generate a spanning tree
using the relative positions of the character boxes.

8



How tough are you?

In general, there are three ways a new character is related to the
previous character:

• Super-script
• Sub-script
• Same level

Developed a recursion based algorithm to generate a spanning tree
using the relative positions of the character boxes.

8



Example tree

(a) Segmented Characters

(b) Spanning Tree

Figure 3: Illustration of Super/Sub-script Tree
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Classification



Feature Selection

Classification can be done using two approaches:

• Use handcrafted features like HOG, SIFT, SURF
• Use deep neural networks like CNN

After pre processing, image is binary and skeletonized to 1 pixel.

• Evident that SIFT and SURF features should not work very well
for this task.

• Histogram of Oriented Gradient feature is used for each image.
• Stroke patterns of characters are important and hence HOG is a
good descriptor for capturing this.
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HOG Features

• Resize each image to 45 × 45 dimensions.
• Find hog descriptors for each image.
• Parameters for HOG Descriptors include the following :-

• BlockSize =(10,10)
• BlockStride= (5,5)
• Cell size =(10,10)
• nbins =9

• These parameters have been reached upon by tuning and
careful inspection.
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Results on different classifiers

• After feature extraction, different classification models are
trained .

• Following results were reached upon:

Model Accuracy on Test Data
SGD Classifier 89.5

Logistic regression 92.5
Naive Bayes Classifier 68.3
Decision Tree Classifier 64.5

So can we do better, yes we can !!!!
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Time to move to CNN

• Input Layer: Raw pixel values of image normalized between 0
and 1

• Convolutional layer: 30 5× 5 filters are applied followed by
ReLU Activation followed by max pooling operation

• Convolutional layer: 15 3× 3 filters are applied followed by ReLU
Activation followed by max pooling operation

• Apply dropout layer next to it to make the system robust and
reduce complexity.

• Flatten the layer and add two fully connected layer next to it.
• Apply softmax at the last layer to get class probabilities.
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Hyperparameters Tuning

• Loss function used is categorical cross entropy
• Optimizer: Adam
• Adam optimization algorithm is an extension to stochastic
gradient descent. Adam improves on the benefits of both
AdaGrad and RMSProp.

• A lot of other parameters i.e, Batch Size and Number of Epochs
were tuned to get the best results.

• Batch Size: 128
• Epochs: 20
• Accuracy: 98.59 %
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Results



Sample Result 1

Figure 4: Sample Input 1

LATEX Output:

a21 + b32 + cx1 = x2
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Sample Result 2

Figure 5: Sample Input 2

LATEX Output:

Σ5
b9θ + sin x−

√
99
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Sample Result 3

Figure 6: Sample Input 3

LATEX Output:

(3x3 + 8θ +
∫
sin θ2)
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Sample Result 4

Figure 7: Sample Input 4

LATEX Output:

(1Σ
5
1x2 + 3x1+

∫
8θdθ +

∫
tan θdθ)
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Sample Result 5

Figure 8: Sample Input 5

LATEX Output:

(Σ9
kk2 + 22k3 +

∫∞
0 tan−1(πx)dx)
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Whats New?

• Contour based segmentation is faster than the popular sliding
window segmentation method.

• Recursion based tree algorithm takes care of virtually infinite
nested super/sub-scripts.

• Complete end-to-end conversion web application.
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Further Work

• Addition of frac function for multi-line fractions.
• We are working on a web based application for this task.
• It takes as input an image and returns the latex code.

Figure 9: Screenshot of Web based application
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