
CONVERSION OF HANDWRITTEN MATHEMATICAL EXPRESSIONS TO LATEX

Gaurav Kumar(14240), Sharad Roy(14628)

Indian Institute of Technology, Kanpur

ABSTRACT

Since it is difficult to render mathematical equations in plain
text editors, popularity of typesetting systems like LATEX
has increased. However, typing mathematical expressions
in LATEX is a cumbersome task. In this project, we present a
novel algorithm for semantic analysis and conversion of hand-
written mathematical expressions to LATEX. Our algorithm
includes three steps - contour based character segmentation,
super/sub-script tree generation and individual character clas-
sification using CNN. Results generated on handwritten test
images are promising.
Code can be found at: GitHub

Index Terms— mathematical expressions, LATEX, OCR

1. INTRODUCTION

Although traditional OCR is a commonly researched field,
recognition of mathematical expressions is an upcoming topic
in the field of handwriting recognition. Automated mathemat-
ical expression recognition systems can be used by students
and professors for online course materials and for conversion
of old printed/handwritten mathematical documents into elec-
tronic formats. However, this task presents some significant
challenges over basic handwriting recognition. First, mathe-
matical characters are more complex than common alphabets
and datasets including these symbols are rare. Second, mathe-
matical expressions don’t have a linear structure, for example
- a symbol may occur in the sub-script of another symbol thus
being relatively lower in position compared to its parent sym-
bol. This non-linear structure is extensible infinitely by recur-
sion. To tackle these challenges, we present a novel three step
algorithm for complete end-to-end handwritten mathematical
expression recognition.

2. RELATED WORKS

A lot of effort has been put in the past decade to address
the problem of handwriting recognition. An entire confer-
ence named ICFHR (International Conference for Frontiers
in Handwriting Recognition) is devoted to this problem.

Some of the early works in this field were accomplished
by Le Cun et al.[5] in 1998 when they proposed a method
to recognize handwritten digits using a 7 layer Convolutional

Neural Network. Since then with the advent of GPU’s and
increased computational power, deeper networks have been
consistently used for recognition. Ciresan et al.[6, 7] pro-
posed deeper networks which could achieve accuracy close to
100 % on MNIST handwritten digit dataset.

For the specific case of mathematical expression recogni-
tion, available literature is very few. Awal et al.[8] tries to
look at strokes inside text for segmentation and performs it
simultaneously along with recognition and interpretation. A
web application called Detexify[1] solves this problem to a
small scale by identifying mathematical symbols input by the
user and provides a ranking of possible outputs. Some other
approaches for this problem are also being experimented with
currently.

3. DATASET

We are using the Handwritten Math Symbol dataset from
Kaggle[2] which contains over 100,000 images of size 45×45
across 82 classes including alphabets, numbers, Greek sym-
bols, mathematical operators and set operators.

Different classes have different frequency in the dataset
depending on how frequently it is used in normal day to day
equations with character ” − ” being the most frequent with
12328 data points and character ”∃” the least with 11 data
points. Since the dataset is so skewed, we use only the top 40
most frequent classes for better classification performance by
reducing class imbalance.

Fig. 1: Distribution of top 40 classes in the dataset

https://github.com/sharadroy/latex-conversion

4. PREPROCESSING

The input image is expected to be black or blue ink on white
paper. A median blur filter of size 5× 5 is applied to remove
any noise on the paper that may not be part of the target ex-
pression.

To do binary thresholding, we cannot directly use a con-
stant threshold since lighting conditions may vary. Therefore,
we must use a custom dynamic threshold. Since our image is
text on white paper, its histogram is generally bimodal with
maxima at the intensities of the ink and the paper. There-
fore we have used the minimum thresholding algorithm which
takes a histogram of the image, smooths it repeatedly until
there are only two peaks in the histogram, and then selects
the minimum between these two peaks as the threshold[3].
We have then used this threshold to binarize the image.

(a) Original (b) Binarized

Fig. 2: Sample result of binary thresholding

We have skeletonized the above binary image using the
cv2.dilate and cv2.erode functions available in the OpenCV
library[4]. This will ensure that the segmented characters
have thickness of 1 pixel each similar to how they are in the
dataset.

5. CHARACTER SEGMENTATION

We are using contouring of character boundaries to segment
characters. To do this, we first apply Canny edge detection
to the binarized image obtained after thresholding. Next, we
draw curves joining all continuous points along the character
boundaries. We ensure that internal contour points are not de-
tected to take care of characters like ’a’ and ’b’. This gives
us the outer boundaries of each character. We then find out
the rectangles enclosing these contour points for each charac-
ter. This gives us the ROI for each character in the image on
which we can operate individually for classification.

(a) Contour points (b) ROIs of characters

Fig. 3: Sample result of character segmentation

Since some writers may have a forward slant in their hand-
writing, we need to deskew the characters. To do this, we have
first computed the ratio of the two central image moments us-
ing the cv2.moments function[4] which is equal to the skew

of the image. Next, we apply an affine transformation at this
angle to deskew the image.

(a) Skewed (b) Deskewed

Fig. 4: Sample result of deskewing

Finally, each character is cropped from the skeletonized
image using the obtained ROIs, converted into a square im-
age by applying horizontal or vertical padding and resized to
45× 45 to make sure that they have the same structure as the
dataset images.

6. TREE GENERATION

Given two adjacent characters, the second character may have
one of many relations to the first - it may be a super-script,
sub-script, argument for the first character or it may just be
the next character on the same level.

We use a spanning tree structure to annotate the complex
two dimensional relations among the characters in the target
expression. Each character has three attributes - mean line,
top line and bottom line which are defined by the bounding
box detected in the character segmentation step. Every char-
acter is a node in the tree and has the following links to other
nodes:

1. super-script: bottom line of this character appears
above the mean line of current character

2. sub-script: top line of this character appears below the
mean line of current character

3. included: bonding box of this character is partially or
completely enclosed in bounding box of current char-
acter

4. next: the top and bottom line of this character enclose
the mean line of current character

5. parent: current character is either super-script, sub-
script or included of this character

Using the character ROIs generated in the previous step,
we iterate over all the characters from left to right to recur-
sively calculate the position of the current character in tree
using its relative position in the x and y direction with respect
to the characters already in the tree.

Fig. 5: Illustration of spanning super/sub-script tree

7. CLASSIFICATION

After image pre-processing and applying tree based recursive
approach on the generated character images, we are now left
with classifying those images. Each and every character im-
age has been reshaped after various operations into a 45× 45
image.

We have followed two different approaches for perform-
ing classification of these character images. The first ap-
proach uses handcrafted features like HOG, SIFT for char-
acter recognition. The second approach makes use of deep
neural networks like Convolutional Neural Network(CNN)
for performing this task. In subsequent sections, we look at
details of each approach in depth and compare their perfor-
mances

7.1. Handcrafted Features such as HOG, SIFT

Histogram of Oriented Gradients[10] is a feature descriptor
that counts occurrences of gradient orientations in localized
portions of an image. The histogram of these oriented gra-
dients are then used as features. Image gradients are good
descriptors because the gradient magnitude is large around
edges and corners and it is evident that these regions are more
vocal in defining the shape of an image compared to the flat
regions.

The character images have been skeletonized to a width of
1 pixel to remain consistent with the training data. Two im-
ages from different classes can be differentiated by its stroke
pattern which can further be captured by its gradient at any
particular location. This intuition helped us to consider fea-
tures like HOG and SIFT which rely heavily on image gradi-
ents for calculating the descriptors.

The following parameters were tuned and selected for
finding the hog features:

1. Cell Size = (10, 10). It is size of the local image patch
taken for calculating the histogram.

2. Block Size =(10, 10) It is the image area over which
the local histogram is normalized. A large block size
decreases the significance of local changes and makes
it more robust.

3. Block stride = (5, 5). It determines how much each
block needs to be shifted and gives us overlapping
blocks.

4. Number of bins =9. Number of different levels in the
histogram of the image. Typically the 9 levels are at
0, 20, 40, ..., 160 degrees.

7.1.1. Performance

We get a 576 dimensional feature vector for each image after
this operation. Training data is split into 4:5 ratio with 80
% of data used for training and 20% for testing. We used 4
different traditional machine learning classifiers for learning
the best fit for our data. The accuracy on each model is listed
below.

Model Accuracy on Test Data
SGD Classifier 89.5

Logistic regression 92.5
Naive Bayes Classifier 68.3

Decision Tree Classifier 64.5

Table 1: Models with their accuracies

Logistic regression performs the best on test data whereas
Naive Bayes and Decision Tree Classifier had the poorest per-
formance among all these classifiers. Since ours is a 40 class
classification task, results achieved by these methods are com-
mendable.

7.2. Convolutional Neural Networks

Convolutional Neural Networks are a variant of neural net-
works which are used primarily for videos and images.[9]
With the use of these networks, a number of computer vision
tasks have been able to achieve error rates which are close to
human error. They learn features themselves in a hierarchical
manner and don’t need handcrafted features.

The CNN model was trained using Keras and its architec-
ture is as follows:

1. Input layer: Raw pixel values of image normalized
between 0 and 1 is provided as input to the CNN layer.

2. First Convolutional layer: 30 (5× 5) filters are applied
to the image to learn lower level features. It is followed
by ReLU Activation followed by max pooling opera-
tion.

3. Second Convolutional layer: 15 (3 × 3) filters are ap-
plied followed by a ReLU Activation which in turn is
followed by max pooling operation.

4. Dropout is applied next to it to make the system robust
and reduce complexity. The dropout layer randomly
drops a predefined fraction of neurons during training.

5. Flatten the layer and add two fully connected layers
next to it. Apply softmax function at the last layer to
get class probabilities for each of the 40 classes.

7.2.1. Hyperparameter Tuning

After hyperparameter tuning, Categorical Cross Entropy loss
is used to train the model with an Adam Optimizer. Batch size
is kept at 128 and the number of epochs for which the model
is trained is 20.

(a) Accuracy (b) Loss

Fig. 6: CNN performance vs. number of epochs

7.2.2. Performance

We are getting validation accuracy of 98.59% and validation
cross-entropy loss of 0.0484 at the end of 20 epochs of train-
ing. We found classification error for each class on training
data. The results of the 5 classes with the highest and lowest
accuracies are as follows:

Class Total examples misprediction Error %
π 2332 0 0

sin 4293 0 0
cos 2986 0 0
tan 2450 0 0
9 3737 4 0.1

Table 2: Best 5 classified Classes

Clearly, visually complex classes like π, sin, cos, and tan
have high classification accuracies since it is easier to distin-
guish them from other classes.

Class Total examples misprediction Error %
× 3251 979 30.11
l 1017 167 16.42
z 5870 327 5.57
(14294 602 4.21
1 26520 676 2.54

Table 3: Worst 5 classified Classes

Certain classes like × and l have low classification accuracy
because they look very similar to some other classes (x looks
same as \times and l looks same as I and i)

8. RESULTS

To test our end-to-end algorithm, we have written mathemat-
ical expressions using blue and black ink on white paper and
taken pictures using a mobile camera under varying lighting
conditions.

Output 1: a21 + b32 + cx1 = x2

Output 2: (3x3 + 8θ +
∫

sin θ2)

Results on the two simple expressions above show that the
model works perfectly for simple expressions and characters
where multi-part characters like ’i’ and ’j’ are not involved.
As shown in the next two examples, such multi-part char-
acters only get segmented into a single part resulting in the
smaller part to be ignored thus resulting in misclassification
of the character.

Output 3: Σ5
b9θ + sinx−

√
99

Output 4: (1Σ5
1x

2 + 3x1 +
∫

8θdθ +
∫

tan θdθ)

Output 3 also shows how the include feature in the tree
works as the under-root only takes in the first ’9’ and not the
second one.

Output 5: x3
y2

1

Output 5 shows how the algorithm works on multiple
nested super/sub-scripts. The final ’1’ come on the same
level as ’3’ since its almost the same size and occurs at the
same level (if it was smaller, or was a bit higher, it would
appear as a subscript of ’y’ instead of being on the same level
as ’3’).

Output 6: (Σ9
kk

2 + 22k3 +
∫∞
0

tan−1(πx)dx)

Output 6 shows the performance of the algorithm on long
expressions with complicated characters like integration, tan
etc. (x is missclassified as 2 due to it not being very clear in
the image).

9. CONCLUSION & FUTURE WORK

Our algorithm gives promising results on single line mathe-
matical expressions and is significantly faster than algorithms
using sliding window method for character segmentation.
Also it can handle virtually infinite nesting of super/sub-
script and includes because of the recursive tree generation.

Multi-part characters like ’i’ and ’!’ are not handled prop-
erly because of the contour based segmentation method. This
can be resolved by creating special cases for these characters
and extending the bounding box vertically for them, however
this is a brute-force solution and not very attractive.

We are currently working on implementing a interactive
web-application for deployement of this project. We can also
implement handling of multi-line expressions like fractions or
even complete derivations/proofs.

10. REFERENCES

[1] Detexify LaTeX handwritten symbol recognition.

[2] ”Handwritten math symbols dataset” by Xai Nano on
kaggle.

[3] ”Thresholding” on skimage documentation.

[4] ”OpenCV User Guide” by OpenCV Dev team on
OpenCV Guide.

[5] Yann LeCun, Lon Bottou, Yoshua Bengio, Patrick
Haffner. ”Gradient-based learning applied to document
recognition” Proceedings of the IEEE, Volume 86, Issue
11 (1998).

[6] Dan Ciresan, Ueli Meier, Jrgen Schmidhuber ”Multi-
column deep neural networks for image classification.”
IEEE Conference on Computer vision and pattern recog-
nition (CVPR), Pages 3642-3649 (2012)

[7] Dan Claudiu Cirean, Ueli Meier, Luca Maria Gam-
bardella, Jrgen Schmidhuber. ”Deep Big Simple Neu-
ral Nets Excel on Handwritten Digit Recognition” arXiv
preprint arXiv:1003.0358v1 (2010)

[8] Ahmad-Montaser Awal, Harold Mouchere, Christian
Viard-Gaudin. ”Towards handwritten mathematical ex-
pression recognition.” 10th International Conference on
Document Analysis and Recognition(ICDAR), 2009

[9] ” Convolutional Neural Networks for Visual Recogni-
tion” Stanford Course CS231n Page.

[10] ”Wikipedia article on HOG Features” HOG.

http://detexify.kirelabs.org/classify.html
https://www.kaggle.com/xainano/handwrittenmathsymbols
http://scikit-image.org/docs/dev/auto_examples/xx_applications/plot_thresholding.html
https://docs.opencv.org/2.4.13/doc/user_guide/user_guide.html
http://cs231n.github.io/convolutional-networks/
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients

	 Introduction
	 Related Works
	 Dataset
	 Preprocessing
	 Character Segmentation
	 Tree Generation
	 Classification
	 Handcrafted Features such as HOG, SIFT
	 Performance

	 Convolutional Neural Networks
	 Hyperparameter Tuning
	 Performance

	 Results
	 Conclusion & Future Work
	 References

