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Problem Statement

@ Given two different sentences, aim is to predict the degree of semantic
similarity between them.
@ The objective can be defined mathematically in the following manner.
Given two question pairs g1 and g2, learn a model M such that
o M(ql,q2) =1if q1 & g2 have semantic similarity
o M(ql, q2) = 0 otherwise
@ Model returns the probability of relatedness which would be
thresholded to get the final binary output.
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Dataset

@ For this problem, we would be using the labeled Quora Question
database.

@ Here is a snippet of the dataset.

id qid1 qid2 question1 question2 is_duplicate

447 895 896 What are natural numbers? What is a least natural number? 0
Which pizzas are the most popularly How many calories does a Dominos

1518 3037 3038 ordered pizzas on Domino's menu? pizza have? 0

3272 6542 6543 How do you start a bakery? How can one start a bakery business? 1

If | had to choose between learning
Java and Python, what should | choose
3362 6722 6723 Should | learn python or Java first? to learn first? 1

@ Each training example consists of two questions and their respective
question ID'’s.

@ Each example has a binary label 1 or 0 where 1 means that question
pair is similar
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Quora is a platform for asking questions and answering them

Since, anybody can ask any question, chances of question duplication
are high. Same question may be asked by multiple users.

Important to identify such redundancies and remove them.

User can be redirected to a similar answered question

It requires a learning model to perform this task automatically
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Pre Processing

@ Tokenization is done on all the questions

e Padding is done for each question to have max sequence length of 25.

@ Pretrained Glove 840B 300d matrix was used to generate word
embeddings for words in the vocabulary.
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Diagram showing preprocessing
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Approaches used

LSTM with concatenation

LSTM with distance and angle

Siamese LSTM with Manhattan distance
Max-bag of embedding approach

Neural bag of words
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LSTM with Concatenation

Representation 1 Representation 2

Representation 1

Question 1

Representation 2

Embedding 2
Question 2

Figure: Visual representation of Approach 1
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LSTM with Distance and Angle

Representation 1 (R1) Representation 2 (R2)

Embedding 1

Question 1 Question 2

Figure: Visual representation of Approach 2
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Siamese LSTM

with Manhattan Distance

Prediction
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Figure: Word index for each question is fed as inputs
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Neural bag of Words
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Hyperparameters Tuning

Loss Function : Binary Cross Entropy for all methods

Dropout : 0.1 for all methods
LSTM with Concatenation

e Optimizer: Adam
e Batch Size: 128
e Epochs: 25

@ LSTM with Distance and Angle

e Optimizer: Adam
e Batch Size: 128
e Epochs: 25
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HyperParameter Tuning

@ Siamese LSTM with Manhattan distance
e Optimizer: AdaDelta
e Batch Size: 32
e Epochs: 10
e Gradient Clipping Norm: 1.25
@ Max bag of Embedding
e Optimizer: Adam
e Batch Size: 128
e Epochs: 25
@ Neural Bag of Words

e Optimizer: Adam
e Batch Size: 32
e Epochs: 25
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Plot between Training Loss and Epoch

Training loss vs epoch

Training loss->
/

epoch->
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Plot between ining Accuracy and Epoch

Training accuracy vs epochs
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Validation Loss vs Epoch

validation loss vs epochs
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Validation Accuracy vs Epoch

- validation accuracy vs epochs
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Accuracies

Models Accuracy
LSTM with concatenation 82.18
LSTM with distance and angle 82.55
Siamese LSTM with Manhattan distance 82.11
Max-bag of embedding approach 81.50
Neural Bag of words 79.84
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The End
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